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The paper reports numerical solutions to a semi-elliptic truncation of the Navier- 
Stokes equations for the case of developing laminar flow in circular-sectioned bends 
over a range of Dean numbers. The ratios of bend radius to pipe radius are 7 : 1 and 
20 : 1 ,  corresponding with the configurations examined experimentally by Talbot and 
his co-workers in recent years. The semi-elliptic treatment facilitates a much finer 
grid than has been possible in earlier studies. Numerical accuracy has been further 
improved by assuming radial equilibrium over a thin sublayer immediately adjacent 
to the wall and by re-formulating the boundary conditions at  the pipe centre. 

Streamwise velocity profiles at Dean numbers of 183 and 565 are in excellent 
agreement with laser-Doppler measurements by Agrawal, Talbot & Gong (1978). 
Good, albeit less complete, accord is found with the secondary velocities, though 
the differences that exist may be mainly due to the difficulty of making these 
measurements. The paper provides new information on the behaviour of the 
streamwise shear stress around the inner line of symmetry. Upstream of the point 
of minimum shear stress, our numerical predictions display a progressive shift 
towards the result of Stewartson, Cebici & Chang (1980) as the Dean number is 
successively raised. Downstream of the minimum, however, in contrast with the 
monotonic approach to an asymptotic level reported by Stewartson, the numeri- 
cal solutions display a damped oscillatory behaviour reminiscent of those from 
Hawthorne’s (1951) inviscid-flow calculations. The amplitude of the oscillation 
grows as the Dean number is raised. 

1. Introduction 
The movement of fluid through curved pipes and bends is of considerable practical 

and fundamental interest. It is well known that in such flows secondary motions arise 
in the cross-stream planes producing a streamwise flow pattern which may be far 
removed from that found in a straight pipe. The secondary motions can be explained 
qualitatively in terms of the response of a viscous-fluid element to an imbalance 
between the centripetal acceleration and the cross-stream pressure gradient induced 
by lateral curvature of the main flow; see, for example, Cuming (1952) and Johnston 
(1978). In a curved pipe, the result is a cross-stream or secondary motion carrying 
fluid symmetrically along the pipe walls from the outer to the inner line of symmetry 
and along the symmetry plane of the pipe from the inner to the outer line of 
symmetry as shown in figure 1. 
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FIQURE 1. The configuration considered and the describing coordinates. 

Analysis of the equations describing laminar flow through curved pipes shows that 
two parameters characterize the flow ; the radius ratio 6 = a / R  and the Dean number 
De = &Re (Berger, Talbot & Yao, 1983). In  the above definitions, a is the radius of 
the pipe cross-section, R is the pipe mean radius of curvature, and Re is the flow 
Reynolds number w 2 a / v  where w is the bulk average velocity through the pipe and 
Y is the fluid kinematic viscosity. Since the Dean number is equal to the ratio of the 
square root of the product of the inertia and centrifugal forces to  the viscous force, 
it provides a measure of the intensity of the secondary flow. The radius ratio S is a 
more direct measure of the influence of pipe geometry on the flow. It affects the 
balance of inertia, viscous and centrifugal forces. Berger et al. (1983) point out that 
the influence of 6 on the flow through curved pipes is not as well understood as that 
of the Dean number. 

Fully developed flow in curved pipes has been the subject of extensive research, 
a review of the subject having recently been made by Berger et al. (1983). The more 
complex entry flow into a curved pipe has been studied far less completely. 
Theoretical attempts to  solve the problem have been seriously handicapped by a lack 
of sureness in the simplifying assumptions underlying the various analytical 
approaches. In addition, for fixed 6 and De, the flow developing in a curved pipe is 
a function of the inlet-plane boundary conditions and these present some difficulties 
for general values of Re; see Stewartson, Cebeci & Chang (1980) and Berger et al. 
(1983). 

Yao & Berger (1975) and Stewartson et al. (1980) have investigated the entry- 
flow-development problem theoretically for De % 1.  I n  the former case, two sets of 
equations were derived, one for the inviscid-core flow and the other for the 
three-dimensional boundary layer. At the inlet plane zero cross-stream-velocity 
components and a uniform axial velocity were prescribed. Along the pipe wall zero-slip, 
impermeable conditions were specified. A development of the Karmin-Pohlhausen 
integral method was used to  solve the boundary-layer equations. 

A set of boundary-layer equations, equivalent to  that of Yao & Berger, was solved 
numerically by Stewartson et al. but core-flow/boundary-layer interactions were 
neglected. They also prescribed zero cross-stream velocity components at the inlet 
plane, but they followed Singh (1974) in imposing a potential-vortex condition for 
the streamwise velocity component. A t  any fixed streamwise location RB the 
calculation sequence always advanced from q5 = 0 a t  the outer line of symmetry to 
4 = 180' a t  the inner line of symmetry. Use was made of preliminary solutions of 
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the flow field for all 4 when R8 = 0 and all R8 when 4 = 0. The Keller box scheme 
was used to solve partial differential equations for the leading terms in a power-series 
expansion. The coefficients in the series were obtained seriatim and the series summed 
to yield the preliminary solutions. 

Yao & Berger's solution of the boundary-layer flow in a curved pipe predicts that 
separation of the secondary flow or circumferential boundary layer will take place 
at  a streamwise location from the inlet plane of about O.Ola(De/b)k The width of 
the separation zone, i.e. the distance between 9 = 180' and the point of separation, 
was found to increase with streamwise location, tending asymptotically to a maxi- 
mum value of 54'. This finding is in qualitative agreement with the integral solution 
for fully developed flow obtained by Barua (1963) who predicts a secondary 
boundary-layer separation at 4 = 153", but does not accord with either the fully 
developed integral solution of Ito (1969) or the numerical studies of Collins & Dennis 
(1975) who do not predict separation. In  contrast, and for the first time, Stewartson 
et al. predict a vanishing of the streamwise component of skin friction on the inner 
line of symmetry, 9 = II, at RB = 0.943a/&. The position of zero shear stress 
represents a Singularity in their calculations since the shear stress increases again 
immediately past the zero point on the inner line of symmetry. From their study, 
the authors concluded that the secondary boundary layers 'collide' at 9 = 180" 
forming a radial jet which takes fluid from the inner to the outer pipe-wall region 
along the symmetry plane. 

Experimental measurements obtained by Agrawal, Talbot & Gong (1978) using the 
laser-Doppler velocimeter technique in a transparent curved pipe with S = 3 suggest 
that separation of the circumferential boundary layer, in the sense predicted by Yao 
& Berger, for example, may have occurred by RB = 3.46a/& for De = 138 and by 
RB = 6 . 2 3 ~ 1 8  for De = 678. The values 3.46 and 6.23 are considerably larger than 
those suggested by either Yao & Berger's analysis (0.12 and 0.26) or the constant 
0.943 predicted by Stewartson et al. for the position of zero streamwise shear stress. 
However, it  is interesting to note that, for their higher Dean number, Agrawal et al. 
observed a striking modification of the secondary-flow profiles measured in the region 
of the inside of the bend at two stations: R8 = 1.39a/& and RB = 2.31a/&. 
Although the authors found it difficult to interpret their results, they associated the 
phenomenon with some form of separation. 

In  an effort to verify the fmding of Stewartson et al. Talbot & Wong (1982) used 
an electrochemical technique to obtain the wall-shear stress along the inner line of 
symmetry in a curved pipe with 6 = $. Measurements were made over the range 
188 < De < 1622. They found that the wall shear decreased to a minimum value with 
increasing De, the minimum being located at RB N 0.96a/&, in close agreement with 
the value predicted by Stewartson et al. Upstream of the minimum the measured 
wall-shear stress was also in agreement with the predictions by Stewartson et al. but 
on the downstream side substantial discrepancies were found between measurements 
and predictions. Berger et al. point out that the calculations of Stewartson et al. are 
inaccurate beyond the singularity on the inner line of symmetry and must be 
discounted; further discussion of this point is given by Talbot & Wong (1982). 

From the above i t  is clear that several important aspects of developing curved-pipe 
flow have not yet been resolved. Analytical methods seeking to model the flow as an 
inviscid core interacting with a three-dimensional boundary layer lead to asymptotic 
results that are at variance with numerical calculations of the fully developed form 
of the Navier-Stokes equations. Analytical models do not yet exist which include the 
effect of boundary-layer separation on the inviscid-core flow and, more importantly, 
the very existence of separation is still an unresolved issue. 
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The arrival of large-core digital computers has made feasible the numerical solution 
of either the full or some truncated version of the Navier-Stokes equation. Predictions 
of developing laminar flows in curved pipes by three-dimensional finite-difference 
procedures have been reported by Patankar, Pratap & Spalding (1974), Rushmore 
(1975), Liu (1976,1977), Humphrey (1977) and Levy, Briley & McDonald (1983). The 
procedure of Patankar et al. is based on the boundary-layer equations (with a uniform 
streamwise pressure gradient applied over each cross-sectional plane) and is thus 
applicable only to pipes with very large radius ratios. Levy et al. also adopt a marching 
scheme by taking the pressure field from a potential solution with a bulk correction 
applied plane-by-plane to maintain the same mass flow at any section. While this 
appears a powerful and economical approach to apply in the early stages of 
development, the laminar-flow-entry problem was not of principal interest to these 
workers and consequently no extensive investigation was reported. Moreover, the 
approach becomes less accurate when there is strong interaction between the viscous 
and non-viscous regions a t  high Dean number. The other numerical studies noted 
above have been based on discretizations of the full Navier-Stokes equations and 
share in common the problem of false diffusion arising from the use (for stability) 
of upwind differencing with an inevitably coarse mesh. As a result, flow details such 
as small secondary eddies tend to be smeared out;  none of the studies, for example, 
has reported separation of the secondary flow. 

The present contribution is aimed a t  throwing some light on the various unresolved 
phenomena discussed above associated with developing flows in pipe bends. Efforts 
have been made to  reduce numerical errors to unimportant levels by following Pratap 
& Spalding (1975) in using a semi-elliptic rather than a fully elliptic treatment (thus 
permitting considerably finer meshes than earlier studies), by adopting the third-order 
quadratic upwind differencing of Leonard (1979) (rather than the usual first-order 
upwinding) and by removing the numerical singularity a t  the pipe axis. Although 
numerical resolution is gradually lost as the Dean number is raised, the results 
provide evidence of secondary-flow separation - albeit very weak - for De greater 
than 500. They also show the occurrence of a minimum streamwise wall shear stress 
on the inner line of symmetry. As the Dean number is successively raised, the 
minimum value decreases and occurs at progressively smaller values of Redla, 
though, even a t  the highest value of De considered, this dimensionless position is still 
approximately twice as far downstream as predicted by Stewartson’s analysis. 

While preparing the results of the present study for publication, the recent thesis 
by Soh (1983) on entrance flow in a curved pipe and, subsequently, the paper by Soh 
& Berger (1984) came to our notice. As in several earlier explorations, these workers 
had used a fully elliptic discretization. Despite the resultant coarseness of their 
numerical mesh, by adopting central differencing for convective transport and by 
carefully arranging their mesh non-uniformly over the domain, a superior level of 
detail in the solutions was achieved than had hitherto been reported. The present 
work, which has aimed at providing a very detailed comparison with the experiments 
of Talbot and his co-workers, includes comparisons with the Soh & Berger study where 
feasible. We have omitted consideration of those aspects of the flow where our own 
findings merely confirm Soh & Berger’s results. 
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2. Summary of the numerical solution procedure and boundary conditions 

as shown in figure 1 may be written: 

continuity 

The equations describing the development of a viscous fluid in a toroidal duct such 

a a a 
34 ar ae - r c U + - r r c V + - r W = O ;  

momentum 

In ( l ) ,  U ,  V and W denote velocity components in the circumferential q5, radial 
r and streamwise 8 directions respectively, rc = R + a  cos q5 is the local radius from 
the centre of the bend, while, in (2), $ stands for any of the velocity components, the 
associated source and sink terms being given in table 1. The operators C($)  and D($) 
are defined by 

We note from (4) that second derivatives with respect to 8 are omitted. In  
consonance with this form of the describing equations a ‘ semi-elliptic ’ finite-volume 
discretization is adopted, a description applied to a solution where only the pressure 
field is treated as elliptic. The pressure thus requires storing over the whole domain. 
In contrast, the velocity components are solved in a marching fashion and thus 
require values to be held only on two adjacent (r, $)-planes of nodes. This type of 
solution procedure, first introduced by Pratap & Spalding (1975), is particularly 
attractive in three-dimensional flows for then the savings in memory required for the 
velocity components (compard to a fully elliptic solution) may allow a sufficiently 
fine mesh to be used for the pressure field to reduce numerical errors to unimportant 
levels. The present numerical procedure has broadly followed the strategy of Pratrap 
& Spalding, but several differences in discretization and organization have been 
introduced to improve the numerical accuracy of the results. Quadratic upstream 
interpolation, QUICK, (Leonard 1979) is used to approximate convective transport 
in the cross-sectional plane of the duct following the conclusions of Huang, Launder 
& Leschziner (1985) that this was, overall, the most accurate of the simple treatments 
of convection (see also Han, Humphrey & Launder 1981). Indeed, in tests of flow in 
a driven square cavity (a flow with generic similarities to the secondary motion 
generated in the present study) QUICK has been found to achieve better numerical 
accuracy for a given mesh than central differencing. It is, moreover, relatively free 
of the stability problems that usually prevent central differencing being applied in 
other than time-stepping solvers. The pressure/continuity connection is applied by 
way of Patankar’s (1980) SIMPLER algorithm; in preliminary tests this was found 
to give convergence rates an order of magnitude faster than the earlier and very 
widely used pressure-correction scheme SIMPLE (Patankar & Spalding 1972). 

In  the original semi-elliptic scheme of Pratap & Spalding (1975) no in-plane 
iterations were made on the velocity field and thus, of necessity, coefficients of the 
difference equations were based entirely on upstream information. Although 
economical, this practice proved to be inadequate in the present study which has 
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V 

as 
2p cos $6 

r2. 
+- { I J  sin $ + V cos $ -- 

W 

rr, ar 

TABLE 1 .  Source terms for dependent variables 

included tighter bends than those examined by Pratap & Spaldingt and where, as 
a result, streamwise variations are more rapid. As the pressure field, which was 
iterated by repeated streamwise sweeps over thc solution domain, approached 
convergence, first one and finally two in-plane iterations on the velocity field were 
made with all coefficients being re-evaluated using the current plane information. 

At the highest Dean numbers a significant economy in the memory required a t  any 
cross-sectional plane was achieved by assuming that the static pressure within a thin 
annular ring adjacent to the pipe wall was obtainable from radial momentum 
equilibrium. Within this sub-region, which extended from the wall to 0.9a,  the 
pressure was obtained from the following degenerate form of the radial momentum 
equation : 

( 5 )  
i ap w2cos+ u2 +--, - - _ _  
P ar r r 

while the radial velocity V was obtained from the continuity equation, (4). This 
parabolie-sublayer treatment (PSL) was originally developed to facilitate the study 
of complex turbulent flows (Iacovides & Launder 1984) but it has also proved helpful 

t The Pratap-Spalding study was confined to square-sectioned bends. 
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for the flows examined here since, at  entry to the solution domain, the boundary layer 
is extremely thin and a fine near-wall mesh is inevitably required. 

There is no intrinsic need for a particularly fine mesh at  the pipe centre. Many 
earlier numerical treatments, however, have put radial gradients of all dependent 
variables to zero at r = 0 and, to keep the harmful consequences of this clearly 
incorrect prescription to unimportant levels, a refined grid has been needed in the 
vicinity of r = 0. The central difficulty is that a t  r = 0 (J = 1) there are many 
coincident nodes each corresponding to a different circumferential angle $ (I). In the 
present study, for the streamwise velocity component W the same value has been 
assigned to all these coincident centre nodes ( W ( I ,  l)) ,  this value being the average 
value over the surrounding nodes : 

where I = 2 and I = ( N I -  1) correspond to 0 and R radians respectively. The U 
and V components, however, cannot take the same value at the centre. Instead, i t  
is required that the resultant of U ( I ,  1)  and V(I ,  1) should produce the same velocity 
vector irrespective of the circumferential location. Now this resultant velocity must 
lie on the symmetry axis : its value V,,, is obtained as the mean of the radial velocity 
components on $ = 0 and $ = 7c on either side of the centre n0de.t The U and V 
velocity components for other values of $ are then obtained as 

U ( I ,  1 )  = V,,, sin$; V ( I ,  1) = V,,, cos$. 

Soh & Berger (1984) have also adopted this treatment for finding U and V at the 
pipe centre. 

A t  the tube wall all three velocity components are set to zero. A t  the inlet plane 
the streamwise velocity is assigned as uniform over the plane while the other velocity 
components are set to zero. A t  the 0 = 180" plane no constraints are required on the 
velocity components (which are treated in a boundary-layer fashion) while the 
streamwise pressure gradient has been set uniform over the section at a level needed 
to satisfy continuity. This latter condition, while not in accord with the actual 
pressure gradient at  180' (which is affected by bend-exit effects) has been found to 
affect the flow pattern only within 20' of the exit (for 6 = $). None of the comparisons 
drawn below relates to a position in the bend greater than 160" from the entry. 

A number of computations reported below have been repeated several times with 
different distributions of nodes in the three coordinate directions and with a 
progressive mesh refinement. The standard mesh density employed was 20 
(radial)x20 (circumferential, $) x 150 (axial, 0) for the pressure p, and for the 
velocities 28 x 20 x 2. The difference in the number of radial nodes for the velocity 
and pressure fields arises from the fact that in the 'parabolic sublayer' pressure nodes 
are not required but velocity nodes are. 

The computations have been made on a CDC7600 computer at the University of 
Manchester Regional Computing Centre. Central processor time required to proceed 
from a uniform guessed initial pressure field to a final converged state where residual 
mass errors summed over the entire domain were below 0.1 yo of the entering mass flow 
ranged from loo00 s for De = 138 to 25000 s for De = 2712, for S = 3. 

t In fact, V,,, is the average of V on q5 = 0 and the negative of that on q5 = r[. 
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3. Presentation and discussion of results 
Comparison is drawn first with two experiments reported by Agrawal et al. (1978), 

one in a bend with 8 = + a t  a Dean number of 183 (Re = 484) and the other with S = & 
and De = 565 (Re = 2530). I n  the experiments, the bend was preceded by a bell-mouth 
entry ; the computer stimulation began with a uniform streamwise velocity and zero 
secondary velocities a t  the entry plane to  the bend (0"). It will be seen later from 
a comparison with wall stresses that the unavoidable mismatch between the 
experimental and computational starting profiles leads to  a lag in the computation 
by approximately 5" of arc in the case of 6 = -3. Streamwise-velocity profiles a t  
representative stations are shown for these two flows in figures 2 and 3. Owing to 
the difference in refractive index between the Perspex pipe and the glycerin-water 
mixture which provided the working fluid, experimental velocity traverses were made 
along the non-parallel lines indicated in the figures. The numerical data were 
interpolated to extract velocities along the same lines. 

Near the bend entry the potential vortex is clearly evident in each case. For the 
lower Reynolds number there is some indication that the measured boundary layer 
is a little thicker than that computed, in part due to neglect in the computations of 
any boundary layer a t  the entry plane. As the shear flow develops around the bend, 
the secondary motion displaces the velocity maximum to the outside of the bend and, 
in the case of the higher Dean number, produces double velocity maxima along some 
lines. The computations and the experiments generally produce a strikingly similar 
behaviour. The somewhat smaller distortion of the computed profiles at De = 183 and 
L / R  = 7.34 (where L is the distance from the bend entry measured along the circular 
path through the pipe centre) compared with experiment is, we believe, probably due 
to  the thinner computational inlet boundary layer. Other small differences that a close 
examination reveals are probably attributable to  the uncertainty in the measured 
Reynolds number of f 8 Yo. 

The secondary-flow data reported by Agrawal et al. (1978) were in fact obtained 
later than the streamwise velocities and at different Dean numbers, 138 and 678. 
Figures 4 and 5 draw comparisons between the measured profiles and the corresponding 
numerical results. I n  each case, the secondary flow carries fluid from the outside to 
the inside of the bend near the wall with a slow return flow over the remainder of 
the cross-section. At the higher Dean number (or, rather, Reynolds number) the 
near-wall current is confined closer to the wall due to  the thinner streamwise 
boundary layer and the return-flow pattern is noticeably more complex near the 
inside of the bend. The numerical computations mirror the experimental data 
reasonably well but not, i t  must be acknowledged, as well as in the case of the 
streamwise profiles discussed above. The predicted near-wall outer-to-inner flow is 
thicker than that measured. This superficially might appear to arise from numerical 
diffusion but the QUICK scheme adopted for convection is accurate up to third order 
and does not suffer from the severe numerical smearing to which upwind differencing 
is prone. Moreover, grid refinement produced negligible changes in the results at these 
Dean numbers. The question thus arose as to  whether the experimental Dean number 
could have been different from that reported.? Without claiming to  answer that 
question i t  is a t  least of interest to  notice that in figure 5 the computed secondary 
flows a t  a Dean number twice that reported experimentally are in significantly closer 
accord with the experiment than the reported value of 678. At this higher Dean 

t Professor Talbot advises us that the uncertainty in determining the Dean number in these 
experiments did not exceed about 10%. 
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1 W /  w 

FIGURE 2. Streamwise velocity profiles along lines 1-5. Right-hand figures: experiments of Agrawal 
et al. (1978). Left-handfigures: present computations; De = 183; R / a  = 7. (a)  L / a  = 1.84; ( b )  7.34; 
(c) 19.54. 
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FIGURE 3. Streamwise velocity profiles along lines 1-5. Right-hand figures: experiments of Agrawal 
etal.  (1978). Left-hand figures: present computations; De = 683; R/a = 20. (a) L / a  = 2.4; ( b )  29.4; 
( c )  57.6. 
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Lfa = 1.83 

L f a  = 6.1 I 

- Inside 

w Outside 

Inside 

Lfa = 12.83 

FIGURE 4. Secondary-velocity profiles. Right-hand figures: experiments of Agrawal et al. (1978) 
Left-hand figures: present computations; De = 138; R / a  = 7. (a) L/a = 1.83; ( b )  6.11; (c) 12.83. 
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Inside m 

FIGURE 5(a ,b) .  For caption see facing page. 

number the secondary profiles reflect the weakening of viscous effects compared to 
inertial terms through the appearance of secondary maxima and minima along a 
number of traverse lines near the inside of the bend. Indeed, the computations at  
De = 1356 indicate in figure 5 ( c )  a reversal of the direction of secondary flow on the 
symmetry plane, implying the formation of a counter-rotating eddy.t In the 
experiments the secondary velocity on the axis is reduced almost to zero along two 
traverse lines in figure 5 ( c )  but does not actually reverse. It may be noted, however, 
that the measured secondary velocities appear to suffer from an ‘outward ’ bias. That 
is to say, the secondary-flow profiles indicate a mass flow rate to the outside of the 
bend that is up to 6 times larger than that to the inside. If the flow were fully 
developed in the axial direction, continuity would require precisely the same inward 
and outward flow rates along every line drawn from the boundary to the symmetry 
plane. Now, the predicted secondary profiles do indicate that such a balance exists 
within about 10 yo. Thus, in the computations the effects of changes of Win the axial 

t It is interesting to note that Azzola 8z Humphrey (1984) have measured such a counter-rotating 
eddy near the symmetry plane for turbulent flow in a 180’ bend. 
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Lla = 12.89 

Inside m 

k 

a: a z 

L / a  = 16.49 

FIGURE 5. Secondary-velocity profiles. Centre figures: experiments of Agrawal et al. (1978), 
De = 678. Right-hand figures: present computations, De = 678. Left-hand figures: present com- 
putations, De = 1360. (a) L/a  = 3.67; ( b )  9.16; (c) 12.89; (d) 16.49. 

direction do not make a major contribution to the mass balance. Now, since there 
is such close agreement between the measured and computed Wprofiles, we may infer 
that in the experiments also the contribution of a(rW)/aO to the mass balance is small 
beyond the initial entry region. It is thus difficult not to conclude that the 
experiments, for whatever reason, have given a spurious augmentation of the 
secondary velocity towards the outside of the bend. Thus it seems probable that the 
actual flow does indeed exhibit a secondary-flow reversal on the axis. Although the 
computations - even those at  De = 1356 - do not quite show the roller-coaster 
appearance of the experimental profiles, in view of the above discussion the 
agreement is probably satisfactory. 

Agrawal et al. (1978) speculated that ‘separation’ of the secondary flow may have 
occurred at their data collection point closest to the inside of the bend. In fact, though 
one cannot distinguish it in the figure, the computed wall-adjacent velocities at this 
position do take very small negative values as may be inferred from the variation 
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I ~ X J R E  6. Gtreamwise-velocity contours: De = 565; Rlu = 20; Lla  = 29.4; -, Talbot et al. 
experiments; ----, present computations; - - - - - - - -  , Soh (1983). 

of circumferential shear stress in figure 10. Readers arc referred to Soh & Berger’s 
plots of the secondary-flow vectors (figures 9 and 10) which also convey clearly the 
increasing complexity of the secondary-flow pattern with Dean number. 

We return briefly to the streamwise-velocity component to observe how its isovels 
are distorted by the secondary flow ficld. Figure 6 presents measured and predicted 
contours for a Dean number of 565 a t  83” from the bend entry. Soh (1983) provides 
computed results for this flow condition a t  the same location and his predictions are 
included in the figure. The contour plots convey a clear impression of how the 
secondary flow (similar to that shown in figure 6c)  pulls out the axial contours as 
fluid flows along the walls from the outside to the inside of the bend. Because the 
bulk of the return flow also takes place along the periphery of the pipe, however, the 
profiles are folded back on themselves forming hook-like contours or ‘fingers’. The 
present numerical results mimic closely the measurements while Soh’s coarse-grid 
calculations yield contours for W /  wenclosing smaller regions of the flow than either 
the measurements or the present calculations; the main features of the flow are 
nevertheless quite well predicted. 

Figures 7-10 relate to the distributions of wall shear stress around the inside of 
the bend, a topic that has been the main concern in the papers by Stewartson et al. 
(1980) and Talbot & Wong (1982). Figure 7 shows the development of the axial wall 
shear stress along the inner line of symmetry a t  four Dean numbers. The predicted 
behaviour for De = 678 is almost identical with that reported by Soh & Berger (1984) 
for De = 680.3. Figure 7 also includes the behaviour predicted by Stewartson et al. 
As discussed in 5 1 the analysis developed by these workers gives a vanishing shear 
stress a t  2 = O(R/a); = 0.943 which represents a point of singularity in the solution 
since immediately downstream therefrom the shear stress rises sharply and then 
approaches monotonically an asymptotic value. Stewartson et al. comment that their 
analysis is strictly applicable only for very small values of S and for De 9 1.  Certainly, 
as the Dean number is successively raised the present numerical results shift in the 
direction of that limit, i.e. the minimum dimensionless wall shear rate falls as De 
increases and the minimum value occurs a t  progressively smaller values of 2 (though 
even a t  De = 2712 the minimum is reached about twice as far downstream as the 
predicted singular point). Downstream of the minimum, the numerical solutions 
display a damped oscillatory behaviour, the amplitude growing as the Dean number 
is raised. This behaviour is evidently in striking contrast with Stewartson’s result, 
yet is a t  least in qualitative agreement with the inviscid analysis of Hawthorne (1951). 

It would have been interesting to extend the numerical results to higher Dean 
numbers but this was not feasible since to achieve sensible grid independence for larger 
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FIGURE 8. Distribution of dimensionless wall shear stress along inner line of symmetry. Sensitivity 
of results to grid refinement: -, 28 x 20 x 150 nodes; -----, 20 x 20 x 100 nodes. 
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t 

183 

678 

2 4 6 

FIQURE 9. Comparisons of experimental and measured wall-shear stresses -, computations along 
Q = X ;  V, 0,  0 experiments, Talbot C Wong 4 = n; -----, computations along q5 = in; 0, 
experiments 9 = in. 

z 

De 

183 

- 678 

----- 1356 

2712 - - -  c t 

0 2 4 6 
z 

FIQURE 10. Dimensionless circumferential shear stress along q5 = in. 

De than those reported would have required finer meshes - and thus more in-core 
storage than was available to us. The effect of grid refinement on the present solutions 
can be judged from figure 10 which shows results obtained for the three highest 
Dean numbers with the standard 28 x 20 x 150 grid and with a coarser version: 
20 x 20 x 100. A t  Dean numbers of 678 and 1356 the changes in shear stress arising 
from grid refinement are rather small and the trend is generally to raise the shear 
stress slightly. The change is more substantial a t  the highest Dean number, the 
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minimum shear stress being raised by a factor of 3. For this last caae the coarser grid 
gives a behaviour up to the position of minimum shear stress much closer to that 
predicted by the analysis of Stewartson et al. Nevertheless, the finer grid solution 
brings the behaviour at this highest Dean number much more into line with the 
numerical results at lower values of De. 

The conclusion that the solution of Stewartson et al. did not adequately describe 
the flow downstream of the singularity was originally drawn by Talbot & Wong (1982) 
on the basis of experimental shear-stress data obtained by an electrolytic method. 
Comparisons with these measurements are shown in figure 9 where the present 
computational curves are all displaced to the left a dimensionless distance 0.2 
(corresponding to 4.3' of arc), an arbitrary adjustment to try and account for the 
effects of the inlet contraction. For De = 678 the computed curve corresponding to 
the streamwise wall stress at is also included to allow comparison with the resultant 
stress along this line measured by Choi, Talbot & Cornet (1979).t Agreement between 
the experimental and numerical results is somewhat mixed. At a Dean number of 
183 the computed values are some 20% below the data, while a t  the higher Dean 
numbers the cluster of data points around 2 = 1.0 give substantially lower values 
than predicted. It is hard to ascribe a level of accuracy to the experiments: the 
calibration curve from Talbot t Wong suggests that the stress levels are systematically 
low by an amount ranging from 15-25 % depending on the surface strain rate, though 
no estimates of other uncertainties are provided. Apart from the case of the lowest 
Dean number the impression conveyed by the data seems to be that they scatter about 
the numerical predictions rather than display conclusive differences. Talbot & Wong 
inferred from a comparison of their measurements with those at in from Choi et al. 
(1979) that the circumferential wall-shear stress at this position was much smaller 
than the streamwise stress - a conclusion which conflicted with the predicted 
behaviour of Stewartson et al. The present study provides strong support for Talbot 
& Wong's conclusion. The circumferential stress along in, shown in figure 10, is 
an order of magnitude smaller than the streamwise component except in the vicinity 
of its maximum value. We note that the streamwise variation of this component is 
essentially independent of Dean number as far as 2 = 1.5. Moreover, weakly negative 
values of circumferential shear stress occur for De = 678 in the range 2.7 < 2 < 4.8 
and for De = 1356 in the range 3.7 < 2 < 5.4. At  the highest Dean number the 
secondary shear stress remains positive, though close to zero for 2 > 4. It ought to 
be said that this last result is not conclusively established since it is possible that a 
further major grid refinement, while producing negligible changes to the streamwise 
or secondary velocity field, could nevertheless change the circumferential stress from 
a very weak negative value to an equally weak positive value - or vice versa. 

4. Conclusions 
Careful numerical solutions have been obtained of several laminar flows developing 

in 180' bends of circular cross-section that have been the subject of laser-Doppler 
studies by Talbot and his colleagues. Given the small but unquantifiable mismatch 
between the computational and the experimental entry conditions, agreement 
between computed and measured streamwise profiles for Dean numbers of 183 and 
565 is extremely close. There is less complete agreement with the secondary velocity 

t Because the circumferential stress at this position is small compared to the axial stress, the 
resultant stress does not differ from the axial value by more than 1 yo. 



374 J .  A .  C.  Humphrey, H .  Iacovides and B.  E .  Launder 

profiles and one possibility, that would be consistent with the present results, would 
be that the experimental data (which were obtained in a separate study from the 
streamwise profiles) were at a higher Dean number than reported. 

The present computational results indicate a gradual approach towards the 
initial-region behaviour predicted by Stewartson et al. (1980) as the Dean number 
is raised. Even at a Dean number of 2712, however, there are still marked differences 
from Stewartson's solution. Downstream of the point of minimum shear stress on the 
inside wall the numerical results indicate an oscillatory development of the streamwise 
wall stress, the overshoot increasing as the Dean number is raised. This behaviour, 
which is at  least in qualitative agreement with the data of Talbot & Wong (1982), 
and inviscid-flow calculations of the secondary flow by Hawthorne (1951), is in 
striking contrast with the predictions of Stewartson et al. (1980) which show a 
monotonic approach to steady-state conditions. 

The work has formed part of a collaborative Berkeley-UMIST research programme 
on (mainly turbulent) flow around 180" bends funded by the US Office of Naval 
Research through grants N00014-80-C-0031 and N00014-83-G-0021. 

Numerical results were generated by a CDC7600 computer at the University of 
Manchester Regional Computing Centre. Special thanks are due to Professor L. Talbot 
for his assistance in interpreting the data and his interest and encouragement 
throughout the project. Authors' names appear alphabetically. 
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